- 公司简介
- 主营产品
- 产品详情
- 在线询价
- 应用领域
一、概述
GB/T1409工频介电常数及介质损耗测试仪是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。频率可变为50Hz、47.5Hz\52.5Hz、45Hz\55Hz、60Hz、57.5Hz\62.5Hz、55Hz\65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。GB/T1409工频介电常数及介质损耗测试仪配以绝缘油杯加温控装置可测试绝缘油介质损耗。
二、仪器主要具有如下特点
超大液晶中文显示
操作简单,仪器配备全触摸液晶显示屏,超大全触摸操作界面,每过程都非常清晰明了,操作人员不需要额外的专业培训就能使用。轻轻点击一下就能完成整个过程的测量,是目前非常理想的智能型介损测量设备。
海量存储数据
仪器内部配备有日历芯片和大容量存储器,保存数据200组,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出。
科学的数据管理
仪器数据可以通过U盘导出,可在任意一台PC机上查看和管理数据。
多种测试模式
仪器使用内高压、内标准的方式测试,正接法、反接法、自激法。
CVT测试一步到位
该仪器还可以测试全密封的CVT(电容式电压互感器)C1、C2的介损和电容量。
不拆高压引线测量CVT
仪器可在不拆除CVT高压引线的情况下正确测量CVT的介质损耗值和电容值。
CVT反接屏蔽法测量C0
仪器可采用反接屏蔽法测量CVT上端C0的介质损耗值和电容值。
高速采样信号
仪器内部的逆变器和采样电路全部由数字化控制,输出电压连续可调。
多重保护安全可靠
仪器具备输入电压波动、高压电流、输出短路、电源故障、过压、过流、温度等多重保护措施,保证了仪器安全、可靠。仪器还具备设置接地检测功能,确保不接地设备不允许升压。
三、工作原理

在交流电压作用下,电介质要消耗部分电能,这部分电能将转变为热能产生损耗。这种能量损耗叫做电介质的损耗。当电介质上施加交流电压时,电介质中的电压和电流间成在相角差ψ,ψ的余角δ称为介质损耗角,δ的正切tgδ称为介质损耗角正切。tgδ值是用来衡量电介质损耗的参数。仪器测量线路包括一标准回路(Cn)和一被试回路(Cx),如图2—1所示。标准回路由内置高稳定度标准电容器与测量线路组成,被试回路由被试品和测量线路组成。测量线路由取样电阻与前置放大器和A/D转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位差,再由数字信号处理器运用数字化实时采集方法,通过矢量运算得出试品的电容值和介质损耗正切值。仪器内部已经采用了抗干扰措施,保证在外电场干扰下准确测量。
四、 主要技术参数
1使用条件-15℃∽40℃RH<80%
2抗干扰原理变频法
3电 源AC 220V±10%允许发电机
4高压输出0.5KV∽10KV每隔0.1kV
精 度2%
电 流 200mA
容 量2000VA
5 自激电源AC 0V∽50V/15A50HZ、60HZ单频
45HZ/55HZ 47.5HZ/52.5HZ
55HZ/65HZ 57.5HZ/62.5HZ
自动双变频
6分 辨 率tgδ: 0.001%Cx: 0.001pF
7精 度△tgδ:±(读数*1.0%+0.040%)
△C x :±(读数*1.0%+1.00PF)
8测量范围tgδ无限制
C x15pF < Cx < 300nF
10KVCx < 40 nF
5KVCx < 150 nF
1KVCx < 300 nF
CVT测试Cx < 300 nF
9外型尺寸(主机)(mm)350(L)×270(W)×270(H)
外型尺寸(附件箱)(mm)350(L)×270(W)×160(H)
10存储器大小200 组 支持U盘数据存储
11重量(主机)22.75Kg
重量(附件箱)5.25Kg
五、使用注意事项
1. 本仪器只能在停电设备上使用,其它设备可不断电;
2. 仪器自带有升压装置,应注意高压引线的绝缘及人员安全;
3. 仪器必须可靠接地;
4. 使用本仪器检测设备前,应先对设备进行绝缘检测;
5. 确定设备的耐压等级,正确选择仪器升压档位,以防击穿设备,损坏仪器;
6. 仪器所配专用高压电缆出厂时已检测合格,但测量时仍需远离人体;
7. 输入电压为AC220V±10%,超出范围都有可能影响测试精度;大输入电压为AC264V,超过此值会造成损坏,对此厂家不予保修;
8. 打印机有可能在搬运过程中因卷纸松动而出现打印卡纸,此时只需将卷纸取出,绕紧后重新装入;
9. 仪器应注意防潮,防剧烈震动;
10. 发电机供电时应将输出零线接地,否则会提示接地有误。
GB/T1409-2006测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法
前言
本标准修改采用IEC60250:1969《测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法》(英文版)。
本标准根据IEC 60250;1969重新起草,在附录B中列出了本标准章条编号与IEC 60250:1969章条编号的对照一览表。
考虑到我国国情,在采用IEC 60250:1969时,本标准做了一些修改,有关技术性差异已编人正文中并在它们所涉及的条款的页边空白处用垂直单线标识,
为便于使用,本标准做了下列编辑性修改:
a)删除国际标准的日次和前言;
b)用小数点“."代替作为小数点的逗号*,";
c)引用的IEC 60247,由“Measurement of relative permittivity, dielectric dissipation factor andd. c. resistivity of insulating liquids"即"液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量"代替“Recommended Test cells for Measuring the Resistivity of Insulating Liquidsand Methods of cleaning the cells"即"测量绝缘液体电阻率的试验池及清洗试验池的推荐方法";
d)用“e,"代替"ε.'";
e)增加了“术语";
f)增加公式中符号说明
g)图按GB/T1.1-2000标注。
本标准与GB/T 1409-1988的相比,主要变化如下:
1)增加"规范性引用文件"(本标准第2章);
2)增加“电介质用途"(本标准4.1);
3)删去导电橡皮;
4)增加“石墨"(本标准5.1.3);
5)增加“液体绝缘材料"(本标准5.2)。
本标准代替GB/T 1409-1988(固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法》。
测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法
范围
本标准规定了在15 Hz~300 MHz的频率范围内测量电容率,介质损耗因数的方法,并由此计算某些数值,如损耗指数。本标准中所叙述的某些方法,也能用于其他频率下测量。
本标准适用于测量液体、易熔材料以及固体材料。测试结果与某些物理条件有关,例如频率、温度、湿度,在特殊情况下也与电场强度有关。
有时在超过1000V的电压下试验,则会引起一些与电容率和介质损耗因数无关的效应,对此不予论述。
2 规范性引用文件
下列文件中的条款通过本标准的引用而成为本标准的条款。
IEC 60247:1978液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量
3术语和定义
3.1
下列术语和定义适用于本标准。
相对电容率relative permittivity
e.
电容器的电极之间及电极周围的空间全部充以绝缘材料时,其电容Cx与同样电极构形的真空电容C之比
-**(1)
式中:
,一-相对电容率;
C一充有绝缘材料时电容器的电极电容:
C.真空中电容器的电极电容。
在标准大气压下,不含二氧化碳的干燥空气的相对电容率e,等于1.000 53。因此,用这种电极构形在空气中的电容C.来代替C。测量相对电容率ε,时,也有足够的精确度。
在一个测量系统中,绝缘材料的电容率是在该系统中绝缘材料的相对电容率e,与真空电气常数。的乘积。
在SI制中,电容率用法/米(F/m)表示。而且,在SI单位中,电气常数e为;
£。 8.854 x10'F/m;36*x10F/m在本标准中,用皮法和厘米来计算电容,真空电气常数为:
3.2
介质损耗角dielectric loss angle由绝缘材料作为介质的电容器上所施加的电压与由此而产生的电流之间的相位差的余角。
3.3
介质损耗因数"dielectric dissipation factor
tand
损耗角ð的正切。
3.4
[介质]损耗指数[dielectric]loss index
3.5
该材料的损耗因数tan8与相对电容率e,的乘积,复相对电容率complex relative permittivity
5
由相对电容率和损耗指数结合而得到的:
4电气绝缘材料的性能和用途
4.1电介质的用途
电介质一般被用在两个不同的方面:
用作电气回路元件的支撑,并且使元件对地绝缘及元件之间相互绝缘:
用作电容器介质,
4.2影响介电性能的因素
下面分别讨论频丰、温度、湿度和电气强度对介电性能的影响。
4.2.1频率
因为只有少数材料如石英玻璃、聚苯乙烯或聚乙烯在很宽的频率范围内它们的e,和tanð几乎是恒定的,且被用作工程电介质材料,然而一般的电介质材料必须在所使用的频率下测量其介质损耗因数和电容率。
电容率和介质损耗因数的变化是由于介质极化和电导而产生,最重要的变化是极性分子引起的偶极子极化和材料的不均匀性导致的界面极化所引起的。
4.2.2温度
损耗指数在一个频率下可以出现一个大值,这个频率值与电介质材料的温度有关。介质攒耗因数和电容率的温度系数可以是正的或负的,这取决于在测量温度下的介质损耗指数大值位置。
4.2.3湿度
极化的程度随水分的吸收量或电介质材料表面水膜的形成而增加,其结果使电容率、介质损耗因数和直流电导率增大。
注:湿度的显著影响常言发生在1MHz以下及微波棚率范围内。
4.2.4电场强度
存在界面极化时,自由离子的数目随电场强度增大面增加,其损耗指数大值的大小和位置也随此而变。
在较高的频率下,只要电介质中不出现局部放电,电容率和介质损耗因数与电场强度无关,
5试样和电极
5.1固体绝缘材料
5.1.1试样的几何形状
测定材料的电容率和介质损耗因数,好采用板状试样,也可采用管状试样。
在测定电容率需要较高精度时,大的误差来自试样尺寸的误差,尤其是试样厚度的误差,因此厚度应足够大,以满足测量所需要的精确度。厚度的选取决定于试样的制备方法和各点间厚度的变化。
对1%的精确度来讲,1.5 mm的厚度就足够了,但是对于更高精确度,好是采用较厚的试样,例如6 mm-12 mm 测量厚度必须使测量点有规则地分布在整个试样表面上,且厚度均匀度在士1%内。
如果材料的密度是已知的,则可用称量法测定厚度 选取试样的面积时应能提供满足精度要求的试样电容。测量 10 pF的电容时,使用有良好屏蔽保护的仪器。由于现有仪器的极限分辨能力约 1 pF,因此试样应薄些,直径为 10 cm或更大些需要测低损耗因数值时,很重要的一点是导线串联电阻引人的损耗要尽可能地小,即被测电容和该电阻的乘积要尽可能小 同样,被测电容对总电容的比值要尽可能地大 一点表示导线电阻要尽可能低及试样电容要小。第二点表示接有试样桥臂的总电容要尽可能小,且试样电容要大。因此试样电容好取值为20 pF,在测量回路中,与试样并联的电容不应大于约5 pF,
5. 1.2 电极系统
5. 1.2. 1 加到试样上的电极
电极可选用 5.1.3中任意一种。如果不用保护环。而且试样上下的两个电极难以对齐时,其中一个
电极应比另一个电极大些。已经加有电极的试样应放置在两个金属电极之间,这两个金属电极要比试样上的电极稍小些。对于平板形和圆柱形这两种不同电极结构的电容计算公式以及边缘电容近似计算的经验公式由表飞给出。
对于介质损耗因数的测量,这种类型的电极在高频下不能满足要求,除非试样的表面和金属板都非常平整。图 〕所示的电极系统也要求试样厚度均匀
5.1.2.2 试样上不加电极
表面电导率很低的试样可以不加电极而将试样插人电极系统中测量,在这个电极系统中,试样的一侧或两侧有一个充满空气或液体的间隙。
平板电极或圆柱形电极结构的电容计算公式由表 3给出。
下面两种型式的电极装置特别合适
5. 1.2.2. 1 空气填充测微计电极
当试样插人和不插人时,电容都能调节到同一个值 ,不需进行测量系统的电气校正就能测定电容率。电极系统中可包括保护电极
5. 1.2.2.2 流体排出法
在电容率近似等于试样的电容率,而介质损耗因数可以忽略的一种液体内进行测量,这种测量与试样厚度测量的精度关系不大。当相继采用两种流体时,试样厚度和电极系统的尺寸可以从计算公式中消去试样为与试验池电极直径相同的圆片,或对测微计电极来说,试样可以比电极小到足以使边缘效应忽略不计 在测微计电极中,为了忽略边缘效应,试样直径约比测微计电极直径小两倍的试样厚度。
5. 1.2.3 边缘效应
为了避免边缘效应引起电容率的测量误差,电极系统可加上保护电极。保护电极的宽度应至少为两倍的试样厚度,保护电极和主电极之间的间隙应比试样厚度小。假如不能用保护环,通常需对边缘电容进行修正,表 工给出了近似计算公式 这些公式是经验公式,只适用于规定的几种特定的试样形状
此外,在一个合适的频率和温度下,边缘电容可采用有保护环和无保护环的(比较)测量来获得,用所得到的边缘电容修正其他频率和温度下的电容也可满足精度要求
5. 1.3 构成电极的材料
5. 1.3. 1 金属箔电极
用极少量的硅脂或其他合适的低损耗粘合剂将金属箔贴在试样上。金属箔可以是纯锡或铅,也可以是这些金属的合金,其厚度大为100 pm,也可使用厚度小于10 I' m的铝箔。但是,铝箔在较高温度下易形成一层电绝缘的氧化膜,这层氧化膜会影响测量结果,此时可使用金箔。
5. 1.3.2 烧熔金属电极
烧熔金属电极适用于玻璃、云母和陶瓷等材料,银是普遍使用的,但是在高温或高湿下,好采
5f. }1k.
3.3 喷镀金属电极
锌或铜电极可以喷镀在试样上,它们能直接在粗糙的表面上成膜。这种电极还能喷在布上,因为它们不穿透非常小的孔眼。
5. 1.3.4 阴极蒸发或高真空蒸发金属电极
假如处理结果既不改变也不破坏绝缘材料的性能,而且材料承受高真空时也不过度逸出气体,则本方法是可以采用的。这一类电极的边缘应界限分明。
5.1.3.5 汞电极和其他液体金属电极
把试样夹在两块互相配合好的凹模之间,凹模中充有液体金属,该液体金属必须是纯净的。汞电极不能用于高温,即使在室温下用时,也应采取措施,这是因为它的蒸气是有毒的伍德合金和其他低熔点合金能代替汞。但是这些合金通常含有锡,锡象汞一样,也是毒性元素。这些合金只有在良好抽风的房间或在抽风柜中才能用于 100℃以上,且操作人员应知道可能产生的健康危害
5.1.3.6 导电漆
无论是气干或低温烘干的高电导率的银漆都可用作电极材料。因为此种电极是多孔的,可透过湿
气,能使试样的条件处理在涂上电极后进行,对研究湿度的影响时特别有用。此种电极的缺点是试样涂上银漆后不能马上进行试验,通常要求 12 h以上的气干或低温烘干时间,以便去除所有的微量溶剂,否则,溶剂可使电容率和介质损耗因数增加。同时应注意漆中的溶剂对试样应没有持久的影响。
要使用刷漆法做到边缘界限分明的电极较困难,但使用压板或压敏材料遮框喷漆可克服此局限。
但在高的频率下,因银漆电极的电导率会非常低,此时则不能使用。
5.1.3.7 石墨
一般不推荐使用石墨,但是有时候也可采用,特别是在较低的频率下。石墨的电阻会引起损耗的显著增大,若采用石墨悬浮液制成电极,则石墨还会穿透试样。
5.1.4 电极的选择
5.1.4.1 板状试样
考虑下面两点很重要:
a) 不加电极,测量时快而方便,并可避免由于试样和电极间的不良接触而引起的误差。
b) 若试样上是加电极的,由测量试样厚度 h时的相对误差 △h1h所引起的相对电容率的相对误
差 △。r/:r可由下式得到:
Ef— 试样浸人所用流体的相对电容率,对于在空气中的测量则。r等于 to
对于相对电容率为 10以上的无孔材料,可采用沉积金属电极。对于这些材料,电极应覆盖在试样
的整个表面上,并且不用保护电极。对于相对电容率在 3-10之间的材料,能给出高精度的电极是金
属箔、汞或沉积金属,选择这些电极时要注意适合材料的性能。若厚度的测量能达到足够精度时,试样上不加电极的方法方便而更可取。假如有一种合适的流体,它的相对电容率已知或者能很准确地测出,则采用流体排出法是好的。
5. 1.4.2 管状试样
对管状试样而言,最合适的电极系统将取决于它的电容率、管壁厚度、直径和所要求的测量精度。
一般情况下,电极系统应为一个内电极和一个稍为窄一些的外电极和外电极两端的保护电极组成,外电极和保护电极之间的间隙应比管壁厚度小 对小直径和中等直径的管状试样,外表面可加三条箔带或沉积金属带,中间一条用作为外电极(测量电极),两端各有一条用作保护电极。内电极可用汞,沉积金属膜或配合较好的金属芯轴。
高电容率的管状试样,其内电极和外电极可以伸展到管状试样的全部长度上,可以不用保护电极
大直径的管状或圆筒形试样,其电极系统可以是圆形或矩形的搭接,并且只对管的部分圆周进行试验。这种试样可按板状试样对待,金属箔、沉积金属膜或配合较好的金属芯轴内电极与金属箔或沉积金属膜的外电极和保护电极一起使用。如采用金属箔做内电极,为 了保证电极和试样之间的良好接触,需在管内采用一个弹性的可膨胀的夹具。
对于非常准确的测量,在厚度的测量能达到足够的精度时,可采用试样上不加电极的系统。对于相对电容率 。r不超过 10的管状试样,方便的电极是用金属箔、汞或沉积金属膜。相对电容率在 10以上的管状试样,应采用沉积金属膜电极;瓷管上可采用烧熔金属电极。电极可像带材一样包覆在管状试样的全部圆周或部分圆周上。
5.2 液体绝缘材料
5.2. 1 试验池的设计
对于低介质损耗因数的待测液体,电极系统最重要的特点是:容易清洗、再装配(必要时)和灌注液体时不移动电极的相对位置。此外还应注意:液体需要量少,电极材料不影响液体,液体也不影响电极材料,温度易于控制 ,端点和接线能适当地屏蔽;支撑电极的绝缘支架应不浸沉在液体中,还有,试验池不应含有太短的爬电距离和尖锐的边缘 ,否则能影响测量精度满足上述要求的试验池见图2一图4 电极是不锈钢的,用硼硅酸盐玻璃或石英玻璃作绝缘。图 2
和图 3所示的试验池也可用作电阻率的测定,IEC 60247;1978对此已详细叙述
由于有些液体如氯化物,其介质损耗因数与电极材料有明显的关系,不锈钢电极不总是最合适的有时,用铝和杜拉铝制成的电极能得到比较稳定的结果。
5.2.2 试验池的准备
应用一种或几种合适的溶剂来清洗试验池,或用不含有不稳定化合物的溶剂多次清洗。可以通过化学试验方法检查其纯度,或通过一个已知的低电容率和介质损耗因数的液体试样测量的结果来确定当试验池试验几种类型的绝缘液体时,若单独使用溶剂不能去除污物,可用一种柔和的擦净剂和水来清洁试验池的表面 若使用一系列溶剂清洗时则最后要用大沸点低于 100℃的分析级的石油醚来再次清洗,或者用任一种对一个已知低电容率和介质损耗因数的液体测量能给出正确值的溶剂来清洗,并且这种溶剂在化学性质上与被试液体应是相似的。推荐使用下述方法进行清洗。
试验池应全部拆开,地清洗各部件,用溶剂回流的方法或放在未使用溶剂中搅动反复洗涤方法均可去除各部件上的溶剂并放在清洁的烘箱中,在 110℃左右的温度下烘十 30 min待试验池的各部件冷却到室温,再重新装配起来。池内应注人一些待试的液体,停几分钟后,倒出此液体再重新倒人待试液体,此时绝缘支架不应被液体弄湿。
在 上述各步骤中,各部件可用干净的钩针或钳子巧妙地处理,以使试验池有效的内表面不与手接触
注 1:在同种质量油的常规试验中,上面所说的清洗步骤可以代之为在每一次试验后用没有残留纸屑的千纸简单地擦擦试验池。
注2:采用溶剂时,有些溶剂特别是苯、四抓化碳、甲苯、二甲苯是有毒的,所以要注意防火及毒性对人体的影响,此外,抓化物溶剂受光作用会分解。
5.2.3 试验池的校正
当需要高精度测定液体电介质的相对电容率时,应首先用一种已知相对电容率的校正液体(如苯)
来测定“电极常数" 。
“电极常数"C。的确定按式(14):

来计算液体未知相对电容率EX o
式中:
= Co一 C
_CX一Cg
C
··.··.··.····················。··。。。(16)
Cg— 校正电容;
Co— 空气中电极装置的电容;
C— 电极常数;
CX— 电极装置充有被试液体时的电容;
Ex— 液体的相对电容率。
假如 Co I C。和 Cx值是在:。是已知的某一相同温度下测定的,则可求得高精度的。x值。
采用上述方法测定液体电介质的相对电容率时,可保证其测得结果有足够的精度,因为它消除了由于寄生电容或电极间隙数值的不准确测量所引起的误差。
6 测f方法的选择
测量电容率和介质损耗因数的方法可分成两种:零点指示法和谐振法。
6.1 零点指示法适用于频率不超过50 MHz时的测量。测量电容率和介质损耗因数可用替代法;也就是在接人试样和不接试样两种状态下,调节回路的一个臂使电桥平衡。通常回路采用西林电桥、变压器电桥(也就是互感藕合比例臂电桥)和并联 T型网络。变压器电桥的优点:采用保护电极不需任何外加附件或过多操作,就可采用保护电极;它没有其他网络的缺点。
6.2 谐振法适用于10 kHz一几百MHz的频率范围内的测量。该方法为替代法测量,常用的是变电抗
法。但该方法不适合采用保护电极。
注:典型的电桥和电路示例见附录。附录中所举的例子自然是不全面的,叙述电桥和侧量方法报导见有关文献和
该种仪器的原理说明书
7 试验步骤
7. 1 试样的制备
试样应从固体材料上截取,为了满足要求,应按相关的标准方法的要求来制备。
应精确地测量厚度,使偏差在士(0. 2%士。.005 mm)以内,测量点应均匀地分布在试样表面。必要时,应测其有效面积。
7.2 条件处理
条件处理应按相关规范规定进行。
7.3 测f
电气测量按本标准或所使用的仪器(电桥)制造商推荐的标准及相应的方法进行。
在 1 MHz或更高频率下,必须减小接线的电感对测量结果的影响。此时,可采用同轴接线系统(见图 1所示),当用变电抗法测量时,应提供一个固定微调电容器。
8 结果
8.1 相对电容率 E,
试样加有保护电极时其相对电容率。r可按公式(1)计算,没有保护电极时试样的被测电容Cl, 包括了一个微小的边缘电容 Ce,其相对电容率为:

公 式 中:
E,— 相对电容率;
Cl,— 没有保护电极时试样的电容;
C,— 边缘电容;
Co—
法向极间电容;
Co和 C。能从表 1计算得来。
必要时应对试样的对地电容、开关触头之间的电容及等值串联和并联电容之间的差值进行校正。
测微计电极间或不接触电极间被测试样的相对电容率可按表 2、表 3中相应的公式计算得来。
8.2 介质损耗因数 tan8
介质损耗因数 tans按照所用的测量装置给定的公式,根据测出的数值来计算。
8.3 精度要求
在第5章和附录 A中所规定的精度是:电容率精度为士1%,介质损耗因数的精度为士(5%士0.000 5)。这些精度至少取决于三个因素:即电容和介质损耗因数的实测精度;所用电极装置引起的这些量的校正精度;极间法向真空电容的计算精度(见表 1).
在较低频率下,电容的测量精度能达士(0. 1%士。02 pF),介质损耗因数的测量精度能达士(2%士0.000 05)。在较高频率下,其误差增大,电容的测量精度为士(0. 5%士0. 1 pF),介质损耗因数的测量精度为士(2%土。.000 2).
对于带有保护电极的试样,其测量精度只考虑极间法向真空电容时有计算误差。但由被保护电极和保护电极之间的间隙太宽而引起的误差通常大到百分之零点几,而校正只能计算到其本身值的百分之几。如果试样厚度的测量能精确到士。.005 mm,则对平均厚度为 1. 6 mm的试样,其厚度测量误差能达到百分之零点几。圆形试样的直径能测定到士0. 1%的精度,但它是以平方的形式引人误差的,综合这些因素,极间法向真空电容的测量误差为10.5%e
对表面加有电极的试样的电容,若采用测微计电极测量时,只要试样直径比测微计电极足够小,则只需要进行极间法向电容的修正。采用其他的一些方法来测量两电极试样时,边缘电容和对地电容的计算将带来一些误差,因为它们的误差都可达到试样电容的2%-40%。根据目前有关这些电容资料,
计算边缘电容的误差为 10%,计算对地电容的误差为25 。因此带来总的误差是百分之几十到百分之几。当电极不接地时,对地电容误差可大大减小。
采用测微计电极时,数量级是。.03的介质损耗因数可测到真值的士0.000 3,数量级0.000 2的介质损耗因数可测到真值的士。.000 05。介质损耗因数的范围通常是。.000 1-0. 1,但也可扩展到。.
以上。频率在10 MH:和20 MHz之间时,有可能检测出。.00002的介质损耗因数。1-5的相对电容率可测到其真值的士20o,该精度不仅受到计算极间法向真空电容测量精度的限制,也受到测微计电极系统误差的限制。
9 试验报告
试验报告中应给出下列相关内容:
绝缘材料的型号名称及种类、供货形式、取样方法、试样的形状及尺寸和取样 日期(并注明试样厚度和试样在与电极接触的表面进行处理的情况);
试样条件处理的方法和处理时间;电极装置类型,若有加在试样上的电极应注明其类型;测量仪器;试验时的温度和相对湿度以及试样的温度;施加的电压;施加的频率;
相对电容率。r(平均值);介质损耗因数 tans(平均值);
试验 日期 ;
相对电容率和介质损耗因数值以及由它们计算得到的值如损耗指数和损耗角,必要时,应给出与温度和频率的关系
试样的相对电容率:
其 中
C,— 电极之间被测的电容;
In一一 自然对数;
Ig一一常用对数

工频介电常数及介质损耗测试仪在多个领域都发挥着关键作用,我来帮你梳理一下它的主要应用场景:
一、电力行业
- 绝缘材料性能评估:用于测量绝缘材料的介电常数和介质损耗,确保电力传输和配电系统的安全稳定。
- 设备检测:可对变压器、互感器、电抗器、电容器等高压电力设备的电容量及损耗角正切值进行测量。
二、材料科学
- 材料特性分析:通过分析合金、陶瓷、塑料等材料的介电特性,探究其结构和物理化学特征,优化相关工艺。
三、医疗设备
- 组织或液体介质特性评估:在超声检测技术中,用于评估组织或液体的介质特性,辅助诊断人体内部器官。
四、环境监测
- 土壤含水量测量:对土壤中含水量进行精准测量,预测潜在灾难风险。
- 空气污染源定位:评估不同环境因素之间的关系,辅助污染源定位。
五、汽车制造业
- 塑料制品材质属性确定:用于生产过程中迅速确定汽车组件所需材质属性。
六、科研与教育
- 实验室研究:科研机关、学校等实验室用于对绝缘材料的介电常数进行测试。
七、工业制造
- 无机非金属新材料性能研究:工厂对无机非金属新材料性能的应用进行研究。
八、其他领域
- 化工、石油、航空航天:用于相关材料的介电性能测试。
- 电气设备制造:如变压器、互感器、套管、电容器、避雷器等设备及相关绝缘材料的介损和介电常数的测量。
这些应用领域充分体现了工频介电常数及介质损耗测试仪在材料性能评估、设备检测、环境监测等方面的重要作用。




